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Abstract. The wide application of elements with periodic configuration in dynamically loaded structures 

stimulates a study of the propagation phenomenon of harmonic waves in mechanical systems of a periodic 

structure. The absolute majority of investigations of the wave propagation phenomenon in periodic structures 

concern one-dimensional and quasi-one-dimensional systems. Therefore, it is of certain interest to study the 

regularities in the distribution of the “transparency windows” of a mechanical system of a periodic structure with 

continuously changing parameters, which can be obtained by passing through the limit from the corresponding 

system with the threshold-type irregularities. Besides, the non-homogeneity in these systems is of a discrete, i.e. 

threshold type. The article presents the research results of propagation of harmonic waves along unfixed beams 

of a periodic structure. In addition two beam configurations are considered: with a constant cross section in 

individual segments and a continuous change in the cross section along the beam axis. The solution of the two 

problems has been made on the basis of the Floquet theory. As a result of the solution of this problem, frequency 

bands of the waves for both types of beams were found, and a comparative analysis of their propagation was 

carried out. 
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Introduction 

The wide application of elements with periodic configuration in dynamically loaded structures 

stimulates a study of the propagation phenomenon of harmonic waves in mechanical systems of a 

periodic structure. The results of these studies are used for the development of a variety of mechanical 

devices, including agricultural machinery [1], soundproofing systems for aircraft [2], mirrors for 

adaptive optics [3], etc. 

Most studies of the wave propagation regularities in the systems of periodic structure are based on 

the Floquet theory [4], according to which all the kinematic and dynamic characteristics at similar 

points of any two neighbouring periods of the system differ S times. Parameter S, which is usually 

called a multiplier, is generally a complex value: 

 
argi S

S S e= .
 

The multiplier module indicates the diminution degree of the wave amplitude from period to 

period and the argument for the phase shift. It is obvious that |S| = 1 corresponds to the frequency 

intervals of the passage of waves, which we will call “transparency windows”. The discovery of 

“transparency windows” is the main goal in studying the fluctuations of the periodic structures. 

It should be noted that the absolute majority of investigations of the wave propagation 

phenomenon in periodic structures concern one-dimensional and quasi-one-dimensional systems. 

Besides, the non-homogeneity in these systems is of a discrete, i.e. threshold type. As an example of 

periodic systems of the threshold type homogeneous beams or beams of a stepped cross section (with 

separate sections of the constant section) periodically fixed at individual points can serve [5]. 

Therefore, it is of certain interest to study the regularities in the distribution of the “transparency 

windows” of a mechanical system of a periodic structure with continuously changing parameters, 

which can be obtained by passing through the limit from the corresponding system with the threshold-

type irregularities. In this paper similar studies have been conducted on a beam of variable cross 

section as an example. 

Materials and methods 

To achieve this goal, it is interesting to compare the distribution of the “transparency windows” 

for a system with threshold non-homogeneity and for a system that can be obtained from the first one 

by limit transition. Therefore, on the basis of the Floquet theory, it is necessary to solve two tasks, 

respectively. The first task is to determine the “transparency windows” of the beam, each half-period 
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of which consists of N homogeneous parts (that is, the number of parts of a homogeneous section). 

One period of such a beam in Fig. 1 at N = 3 is shown in gray. 

 

Fig. 1. Period of beam of stepped cross section (side view)  

Let us assume that the width of the beam b does not change along the axis x of the beam, and the 

length of each section, on which the height of the beam is constant, is  

 
0

2

a
a

N
= ,

 

where a – length of the period of the beam. 

 

Fig. 2. Period of beam with continuously changing cross-section (side view)  

The second task is to determine the “transparency windows” of the beam, which can be obtained 

from the first by passing through the limit (limit transition) N → ∞. The period of the second beam is 

shown in Fig. 2 in grey. We will also assume that the width of the beam b does not change along the 

axis x of the beam, and then we have: 

1 2
2

a
a a= = , 

where а1 – length of a half-period of the beam. 

Since the formulated problems are one-dimensional, and the dependence of all characteristics on 

time t is harmonic, the solution will be based on analytical methods. Assuming that the deflection 

w(x,t) of each of the beams can be represented in the form w(x,t) = w(x)e
iωt

 relative to the amplitude 

function of the deflections w(x) in one period, we obtain a linear equation [6], 

 
2 2

4

2 2

( )
( ) ( ) 0

d d w x
j x p w x

dx dx

 
− = 

 
, / 2x a< , (1) 

where 

min

( )
( )

J x
j x

J
= , 

3( )
( )

12

bh x
J x =  – moment of inertia of the cross section of the beam; 

 Jmin – minimal value of the moment of inertia; 

 h(x) – height of the beam, 

min

( )F x
p

EJ

ρ
ω= ; 

 ( ) ( )F x bh x=  – cross section area of the beam; 

 ρ, E – density and the modulus of elasticity of the beam material; 

 ω – circular fluctuation frequency. 
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We also note [6] the differential connection between the amplitude functions of the deflections, 

turning angles to the cross section ϑ(x), the bending moments M(x) and the shear forces Q(x): 

 

( )
( )

dw x
x

dx
ϑ = ,

 

 

2

2

( )
( ) ( )

d w x
M x EJ x

dx
= ,

 

 
2

2

( )
( ) ( )

d d w x
Q x EJ x

dx dx

 
=  

 
. (2) 

In order to obtain a solution to the problem, i.e. dependence of the multiplier on the dimensionless 

frequency pa, it is necessary to subject the general solution of equation (1) to the conditions of a quasi-

periodical extension: 

 2 2

a a
w Sw
   = −   
   

,

 

 2 2

a a
Sϑ ϑ   = −   

   
,

 

 2 2

a a
M SM
   = −   
   

,

 

 2 2

a a
Q SQ
   = −   
   

 (3)

 

and to equate to zero the determinant of the obtained homogeneous system. 

The proposed scheme is universal and can be used to solve the problem for a beam with arbitrary 

variation of the cross section. However, for a beam of a stepped cross section, which corresponds to 

the first task, it is more rational to determine the solution separately in each homogeneity interval, 

equation (1) being transformed into a differential equation with constant coefficients: 

 

4
4

4

( )
( ) 0n

n n

d w x
p w x

dx
− = ,

 

 0x a< , 1,2n N= , (4) 

where  wn(x) – amplitude function of the deflections in interval n;  

 n
n

n

F
p const

EJ

ρ
ω= = . 

The general solution of equation (4) has a simple form:  

 
( ) cos( ) sin( ) ch( ) sh( )

n n n n n n n n n
w x A p x B p x C p x D p x= + + + , (5) 

where An, Bn, Cn and Dn – constants of integration.  

Taking into account the differential correlations (3), solution (5) must be subjected to the 

conditions of uninterrupted continuation at the junction points of the sections:  

 0 1( ) (0)
n n

w a w += ,
 

 0 1( ) (0)n naϑ ϑ += ,
 

 0 1( ) (0)
n n

M a M += ,
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 0 1( ) (0)n nQ a Q += , 
 

 1,2 1n N= − . (6) 

In this case, the conditions for the quasi-periodic continuation (3) assume the form: 

 2 0 1( ) (0)Nw a Sw= ,
 

 2 0 1( ) (0)N a Sϑ ϑ= ,
 

 2 0 1( ) (0)NM a SM= ,
 

 2 0 1( ) (0)NQ a SQ= . (7)
 

Consequently, on the basis of correlations (2) and (5)-(7) we obtain a system of homogeneous 

equations. By equating its determinant to zero, we obtain an algebraic equation of the fourth power 

with respect to the multiplier. The solution of the latter does not present fundamental difficulties, since 

for physical considerations one can maintain that, alongside with a certain root S of this equation, its 

root will be also the inverse value 1/S. 

When discussing the problem for the second beam, each period of which consists of two wedge-

shaped parts, we will proceed directly from equation (1) that, taking into account the concrete 

dependence h = h(x), is represented as: 

 

3
2 2

4

2 2

( )
1 2 1 2 ( ) 0

x xd d w x
p w x

dx a dx a
α α

    
+ − + =    

     
,

 

 
2

a
x < , (8) 

where max

min

1
h

h
α = −  – thickness difference of the beam.  

The search for the solution of equation (8) was made by Kirchhoff [7]. He succeeded in obtaining 

some of the first terms of the asymptotic expansion of the solution for small angles of the wedge 

divergence. In a closed form the solution of equation (8) was obtained by A. Dinnik [8;9]. 

For a wedge corresponding to the right side of the period (x > 0), it can be presented in this form:  

 

1 1

1 1

2 1 2 2 1 2

( )
2 2

1 1

2 1 2 2 1 2

,
2 2

1 1

pa x pa x
J Y

a a
w x A B

x x

a a

pa x pa x
I K

a a
C A

x x

a a

α α
α α

α α

α α
α α

α α

   
+ +   

   = + +

+ +

   
+ +   

   + +

+ +
 

(9)

 

where J1, Y1 – Bessel functions of the first and second kind of the first order, 

 I1, K1 – modified Bessel functions of the first and second kind of the first order,  

 B, C and D – constants of integration.  

For a left wedge the expression for the deflection has a similar form, with accuracy up to the sign 

at x. After the conditions for uninterrupted continuation point x = 0 and conditions of the quasi-

periodic extension (3) are satisfied, we arrive at a homogeneous system of linear equations, the 

determinant of which is a polynomial of the 4
th
 degree with respect to the multiplier. Thus, the course 
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of further solution of the second task completely coincides with the course of the solution of the first 

task. 

Results and discussion 

In a graphic form the results of solving the tasks are presented in Figures 3-6 that show (in gray) 

the “transparency windows” depending on the dimensionless frequency pa and parameter α for a 

different number of sections of constancy of the cross section for a half-period N . 

The first three distributions of the “transparency windows” (Figures 3-5) are obtained as a result 

of solving the first task, and the last distribution (Figure 6) is the result of solving the second task. 

When analysing the presented distributions, first of all, we should pay attention to the existence of 

passing the limit (limit transition) at N → ∞. 

Common for all diagrams is also the monotonous increase in the lengths of the intervals of the 

limit intransitivity from the zero value at α = 0 at point nπ. Besides, the smaller is N, the more rapid is 

the increase in the lengths of the intransitivity intervals with the growth of α, which fully corresponds 

to the physical foundations of the theory of wave propagation. 

 

Fig. 3. “Transparency windows” of beam with one homogeneous section for half-period  

 

Fig. 4. “Transparency windows” of beam with three homogeneous sections for half-period 

 

Fig. 5. “Transparency windows” of beam with ten homogeneous sections for half-period 
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The boundary lines of the “windows of transparency”, already depicted in Fig. 3-4, are bent with 

the increase in the thickness difference α, collapsing to the left. This peculiarity is clearly visible at 

N = 1 and N = 3, but at careful examination it can be seen also for N = 10. For this purpose attention is 

paid to the right border of the left “window” in Fig. 5. This is practically the only qualitative 

difference between Figures 5 and 6. The consequence of bending the boundary lines is their 

intersection, as it is the case of Fig. 4 for the lines emerging from point 3π at α = 0.  

Another difference between the diagrams shown in Fig. 3-5 and in Fig. 6 is that in the first three 

figures the “windows” become narrower with the value of parameter α increasing. 

 

Fig. 6. “Transparency windows” of beam with wedge-shaped half-period  

Conclusions 

1. The “transparency windows” for a periodically structured beam with a stepwise cross section 

demonstrate the presence of a limit transition at N → ∞, where N is the number of constancy 

sections of the cross section for a half-period. In other words, the limit transition occurs when 

passing to a piecewise wedge-shaped beam. 

2. The intervals between the “transparency windows” increase with an increase in the heterogeneity 

(the increase in α) for any configuration of the beam. 

3. In contrast to the case of a piecewise wedge-shaped beam, the boundaries of the “transparency 

windows” of the stepped beams collapse to the left with an increase in the non-uniformity of the 

beam. 

4. In contrast to the case of a piecewise-wedge-shaped beam, the “windows of transparency” of the 

beams of the stepped section become narrower with the increase in the non-uniformity of the 

beam. 
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